
764 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

NAND Flash Memory With Multiple Page Sizes
for High-Performance Storage Devices

Jin-Young Kim, Sang-Hoon Park, Hyeokjun Seo, Ki-Whan Song, Sungroh Yoon, and Eui-Young Chung

Abstract— In recent years, the demand for NAND flash-based storage
devices has rapidly increased because of the popularization of various
portable devices. NAND flash memory (NFM) offers many advantages,
such as nonvolatility, high performance, the small form factor, and
low-power consumption, while achieving high chip integration with a
specialized architecture for bulk data access. A unit of NFM’s read
and program operations, the page, has continuously grown. Although
increasing page size reduces costs, it adversely affects performance
because of the resultant side effects, such as fragmentation and wasted
space, caused by the incongruity of data and page sizes. To address
this issue, we propose a multiple-page-size NFM architecture and its
management. Our method dramatically improves write performance
through adopting multiple page sizes without requiring additional area
overhead or manufacturing processes. Based on the experimental results,
the proposed NFM improves write latency and NFM lifetime by up to
65% and 62%, respectively, compared with the single-page-size NFM.

Index Terms— Multiple page sizes, NAND flash memory (NFM).

I. INTRODUCTION

With the recent popularity of various portable devices, the demand
for compact and reliable NAND flash-based storage devices (NFSDs)
has dramatically increased. NAND flash memory (NFM) offers many
advantages, such as nonvolatility, high performance, the small form
factor, and low-power consumption, while rapidly improving capacity
and cost by downscaling the process technology to 21 nm [1] and
providing a 3-D NFM structure.

NFM’s higher degree of chip integration compared with other
types such as NOR flash memory [2] is achieved by its specialized
architecture for bulk data access. In this architecture, the page—the
unit for read and program operations—includes numerous memory
cells. The unit for erase operations, the block, is composed of tens of
pages. Page size has continuously increased since early NFMs, when
a single page was smaller than 1 kB.

Increasing the page size enlarges the portion of cell areas in
a die and reduces the number of NFM operations that service
a given amount of data. Thus, the larger page reduces the
cost-per-bit of NFMs and improves the throughput of NFSDs.
However, the larger page cannot guarantee better performance in
all cases. In particular, the larger page causes higher fragmentation
within NFMs, which causes inefficient utilization of NFM space
[called false capacity (FC)] and increases the number of garbage

Manuscript received September 28, 2014; revised January 12, 2015;
accepted February 13, 2015. Date of publication March 24, 2015; date of
current version January 19, 2016. This work was supported by the National
Research Foundation of Korea under Grant 2013R1A1A2011208 through the
Ministry of Education, and under Grant 20110009963 through the Ministry
of Science, ICT and Future Planning, and by Samsung Electronics Company,
Ltd., Suwon, Korea.

J.-Y. Kim is with Samsung Electronics Company, Ltd., Suwon 443-742,
Korea, and also with Yonsei University, Seoul 120-749, Korea (e-mail:
jy0615.kim@samsung.com).

S.-H. Park, H. Seo, and E.-Y. Chung are with the Department of Electrical
and Electronic Engineering, Yonsei University, Seoul 120-749, Korea (e-mail:
soskhong@dtl.yonsei.ac.kr; jjsky7@dtl.yonsei.ac.kr; eychung@yonsei.ac.kr).

K.-W. Song is with Samsung Electronics Company, Ltd., Suwon 443-742,
Korea (e-mail: kiwhan.song@samsung.com).

S. Yoon is with the Department of Electrical and Computer Engineering,
Seoul National University, Seoul 151-744, Korea (e-mail: sryoon@snu.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2015.2409055

Fig. 1. Page status of (a) and (d) SPNFM with small pages,
(b) and (e) SPNFM with large pages, and (c) and (f) MPNFM when four
sectors are written and given two example requests are handled by NFMs,
respectively.

collections (GCs) [3]. Moreover, when requests with a small amount
of data are given, NFM write performance deteriorates because of
frequent read-and-modify procedures. Bang et al. [4] analyzed these
large-page problems in detail.

Despite the limitations, increasing the page size is inevitable
because of its cost reduction and the performance bottlenecks caused
by large requests. We, therefore, propose an NFM architecture that
offers the advantages of a small page without sacrificing the benefits
of a large one. Although Wang et al. [3] discussed the necessity
of such an architecture, they did not propose specific and realistic
solutions for the implementation.

The contributions of this brief can be summarized as follows.
First, we propose a multiple-page-size NFM (MPNFM) architecture.1

These multiple page sizes occur within a die without affecting the area
and manufacturing process. In addition, the implementation is simple,
because only some logics are shifted to generate the differential page
sizes.

Second, a management method for effectively utilizing NFSDs
equipped with the MPNFM is proposed. The related algorithm
cooperates with any existing flash translation layer (FTL), the
software layer that manages NFM. The proposed method retains
the sophisticated features of the existing FTLs and adds certain
modules to maximize the MPNFM effects. According to our
experiments, the combination of MPNFM and the management
algorithm greatly improves write performance compared with
single-page-size NFM (SPNFM).

The remainder of this paper is organized as follows. In Section II,
we present the background and motivation. In Sections III and IV,
we respectively introduce an MPNFM device and its management
method. We present our experimental results in Section V and our
conclusions in Section VI.

II. BACKGROUND AND MOTIVATION

A. Inefficiency of Large Pages of NFM

To elucidate the advantages of MPNFM, we use a simple example
with three different NFMs, as shown in Fig. 1: 1) SPNFM with small
pages (SPNFM-S); 2) SPNFM with large pages (SPNFM-L); and

1In this brief, we consider only the MPNFM with two different page sizes;
nevertheless, the architecture and management algorithm can be applied to
more general cases.

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016 765

TABLE I
REQUIRED NFM COMMANDS FOR REQUESTS

3) MPNFM. The smallest represents a sector (512 B); the block size
of all NFMs is 2 kB.

The numbers of pages and page sizes among the three NFMs
differ. One block of SPNFM-S includes four small pages, and a page
consists of one sector, whereas one block of SPNFM-L includes
one large page comprised of four sectors. In Fig. 1, the gray areas
represent unusable portions because of the impossibility of in-place
updates. The number of gray areas is proportional to the amount
of FC.

We define a request as {type, logical address, data length}
and assume that two requests {write, address 0, 3 sectors} and
{write, address 5, 1 sector} have been sequentially executed in the
three NFMs. Fig. 1(a)–(c) shows the page statuses of each NFM after
handling two requests; the number in each box denotes the logical
address of the stored sector. The three NFMs will receive the two new
requests; the results of these requests will demonstrate why MPNFM
may be deemed superior to the other memory types.

We now assume that the two new requests are issued as shown
in Table I. For Request 1, SPNFM-S and MPNFM require only one
NFM program, whereas SPNFM-L requires an additional NFM read
for read-and-modify operations. (When a page needs to be modified,
NFM can write new data only after moving some old data in the page
into a new page in order to preserve the old data not changed by the
new request. This is called read-and-modify [3], [4].) This means that
the NFM that utilizes smaller pages is more suitable for small writes.
Cumulative read-and-modify procedures can significantly degrade
write performance.

Request 2 is a sequential read request that fetches three sectors.
When Request 2 is given, SPNFM-L and MPNFM, which include
large pages, outperform SPNFM-S, which has only small pages,
because of the higher throughput caused by the large pages. This
difference is additionally demonstrated by sequential write requests.
A small page typically issues more program commands than larger
pages; therefore, its throughput is lower than that of larger pages.

In addition, the page size difference shows significant effects
after the two requests are serviced. As described above, the gray
boxes in Fig. 1 denote portions of pages that cannot be written
without an erase operation (i.e., FC). Large FC, which is caused
by fragmentation, increases the frequency of GC. After two
requests, the FC values of SPNFM-S, SPNFM-L, and MPNFM are
0, 7, and 1 sector, respectively, as shown in Fig. 1(d)–(f). In other
words, SPNFM-L is the first NFM type requiring GC because of its
low efficiency in utilizing pages.

B. Observation of Workload Characteristics

The aforementioned advantages of MPNFM are effective only if
the workloads given to NFMs have both sequential and random
requests sufficient for contributing to NFSD performance. Using the
same approach as in [3], we analyzed I/O characteristics of several
workloads; Fig. 2 shows that the request size in various workloads
had two different aspects.

Fig. 2. Cumulative distribution functions of (a) request count and
(b) I/O contribution according to request’s size.

Fig. 3. Architectures of (a) SPNFM and (b) MPNFM.

Fig. 2(a) shows that 89% of requests were smaller than 8 kB. These
requests were sensitive to latency of NFMs; therefore, the reduction of
read-and-modify operations and fragmentation using small pages
was effective. Moreover, the higher throughput of larger pages
cannot be ignored because sequential requests significantly
contributed to the total I/O (48% on average), as shown in Fig. 2(b).
In summary, consideration of request size and MPNFM advantages
over SPNFM motivate us to propose MPNFM and its management
method.

III. NFM WITH MULTIPLE PAGE SIZES

A. Design Concept and Cost

An NFM consists of two parts: 1) the core and 2) the peripheral.
The peripheral consists of numerous logic and analog circuits to assist
the core, which includes cell arrays, a row/column decoder, and page
buffers. A page is defined as the cells activated by one word line
within a cell array; therefore, SPNFM, as shown in Fig. 3(a), includes
identical pages across multiple symmetric cell arrays.

The proposed MPNFM as shown in Fig. 3(b), on the other hand,
has asymmetric cell arrays, which result in different page sizes for
different cell arrays. In fact, the difference between MPNFM and
SPNFM is not significant with respect to the architecture, except for
the multiple page sizes. Hence, the design and fabrication of MPNFM
do not cause obvious changes in terms of cost and the manufacturing
process.

For instance, assume SPNFM with a 16 kB page and MPNFM with
28-/4 kB pages. When the area of each cell array and row decoder
are defined as Acx and Adx , respectively, the total respective areas
of SPNFM and MPNFM can be computed as follows:

Ac1 + Ac2 = A′
c1 + A′

c2, Ad1 + Ad2 ≈ A′
d1 + A′

d2. (1)

The total area of cell arrays for the two NFMs is identical, because
the total number of cells connected to the left and right word lines
and the bit line are the same; the only difference between them is
the size of the row decoders. The row decoder for a 28 kB page
must adopt a larger driver size, but the increased driver size can be
compensated by the reduction of the driver size for the 4 kB page.

766 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

Fig. 4. (a) DISTV th measured in NFM of 21 nm CMOS technology.
(b) Operation times according to page size.

Thus, the total area of row decoders becomes approximately
similar.

In addition, the cell structure and operation conditions of MPNFM
are the same as that of SPNFM; only the number of cells connected to
a word line differs. This helps MPNFM not to incur an extra burden
in terms of the physical problem, such as read disturb [5] as well as
the manufacturing process.

B. Operation Time in Multiple Page Sizes

The various page sizes for MPNFM affect operation time. First,
time to read a page of NFM (tR) is as follows [6], [7]:

t R = (tPRE + tSENS + tDISCH) ∝ RCBL (2)

where tPRE, tSENS, and tDISCH, respectively, denote time
to precharge, sense, and discharge for a read command, while RCBL
represents parasitic characteristics of a bit line. The three timing
parameters are not affected by differential page size, because they
depend on RCBL instead of the word line, which is actually affected
by differential page size.

Time to program a page (tPROG) is as follows [1], [6]:
tPROG = (tP + tPV) × # ISPP loop ∝ DISTV th (3)

where tP and tPV are the time to program and verify cells, respec-
tively. # ISPP loop and DISTV th are the number of program and
verify operations in the incremental step pulse programming/erasing
scheme (ISPP), which is typically used by most of modern NFMs [1],
and the distribution of the NFM cell threshold voltage (V th) after one
program pulse is given to the cells, respectively, as shown in Fig. 4(a).
In (3), increasing page size leads to larger DISTV th due to increase
of the number of cells connected to word line, this is followed by
the increase of # ISPP loop, and ultimately increases tPROG.

To quantify the variation of write performance according to page
size, we measured DISTV th in an NFM of 21 nm CMOS technology
and analyzed the correlation between DISTV th and page size. The
results are shown in Fig. 4. We predicted that tPROG is increased
by ∼10% when the page size was doubled (the NFM used for our
evaluation was the same as the proposed device in [1]).

Time to erase a block (tBERS) can be computed as [6], [8]

tBERS = (t E + t E V) ∝ Awell (4)

where tE, tEV, and Awell denote the time to erase the block, the time
to verify it, and the area of the matrix insulated p-well for all blocks,
respectively. Awell is proportional to the page size; accordingly,
a larger page requires a longer tBERS when the number of pages
per block is identical. Considering the proportion affected by Awell
in erase pulses [8], the amount of variation in tBERS is similar to
that of tPROG, which is roughly 10% for doubled pages according
to our measurement.

In conclusion, a large page in MPNFM is worse than a small page
in terms of tPROG and tBERS, as shown in Fig. 4(b); we design the

Fig. 5. Overview of FTL for MPNFM.

specification of MPNFM focusing the large page, because the portion
of the large pages is dominant in overall storage space. To effectively
utilize multiple page sizes, MPNFM may require additional timing
control circuits. However, the area overhead incurred by circuits
(e.g., some delay chains and flip-flop logics) is not obvious; therefore,
a detailed analysis of them is omitted because of space constraints.

IV. FLASH TRANSLATION LAYER FOR MPNFM

A. Overview

To support differential pages within MPNFM, we exploit
existing FTL with minimal modification. Fig. 5 shows the overall
FTL diagram for MPNFM. It includes two independent page-level
FTLs that can be employed to leverage an attractive features in
modern NFSDs. Even different FTLs can be used for each page
without modification, except on the GC part of the small-page FTL.
Further, we add two preprocess modules—a request distributor
and a region bit table—to efficiently utilize MPNFM. The request
distributor classifies incoming write requests based on their lengths,
whereas the region bit table is a small table that indicates requested
data locations between small and large pages by one bit.

B. Address Translation

The request distributor and region bit table are modules relating to
address translation. To classify write requests, the request distributor
forwards write requests smaller than θ to the small-page FTL, where
θ is the size of one small page. By forwarding small writes to
small pages, large-page fragmentation incurred by small writes can
be reduced.

By checking one bit of the region bit table, a request can find the
requested data location. The region bit table stores the bit sequence;
each bit indicates a large (L) or small (S) page. The table is indexed
by the disassembled addresses of the given request’s logical address,
as shown in Fig. 5. (LPNLarge/LPNSmall) is the logical page address
when a logical page includes the group of adjacent data whose
size is the same as the (large page size/small page size) of MPNFM.
The offset is the relative location of one small page within a large
page. In summary, the given request obtains its destination page
and location of the requested data if the data have been already
written. Then, the FTL of the destination page handles the request
and accesses NFM.

C. Garbage Collection

GC of each page type is separately performed, because there are
two independent FTLs for each page type. However, owing to the
limited capacity of small pages and migration overhead, it is better
for data to be eventually moved to large pages; when the data are
moved from large to small pages, more program operations must be
executed.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016 767

TABLE II
EXPERIMENTAL WORKLOAD INFORMATION

Fig. 6. Normalized average write latency.

We modify the destination of the moved data in an existing
GC method and add a new table to record the data transfer.
In particular, when the FTL of the small page activates GC, the valid
pages of the victim blocks are written to the large pages instead
of being written back to another small page, as shown in Fig. 5.
Furthermore, other data with the same LPNLarge and stored in small
pages are moved to the large page along with the data stored in
the GC victim block. The GC operation is complete when all data
movements have been recorded to the region bit table and the
corresponding bits are flipped [15].

The GC modification is intended to maximize the effects
of MPNFM. That is, the modified GC reduces fragmentation by
transforming small write requests into large ones that are compatible
with large pages. Moreover, the modification on the FTL does not
require significant design efforts, because only reads of adjacent data
are to be added and small-page programs are to be substituted for
large ones.

V. EXPERIMENTS

A. Experimental Setup

To evaluate MPNFM and its management scheme, we implemented
a trace-driven simulator [9], [10], which included the FTL and NFM
as specified in [11]. Various workloads summarized in Table II
were collected from [12] and [13], and a common PC using
DiskMon [14]. The simulator includes SPNFM with page sizes
ranged from 2 to 64 kB and an ordinary page mapping FTL as
the control group, and MPNFM with two page sizes (32 and 4 kB)
and the page mapping FTL, including the proposed management
algorithm. The capacity of all NFMs was set to 4 GB for fair
comparison. Finally, the NFM operation times were applied on the
basis of NFM specifications from [11] and the variation rate of
operation times according to the page size mentioned in Section III-B.

B. Experimental Results

1) Average Write Latency: The write latency is a critical NFSD
metric that many researchers have targeted. As listed in Fig. 6, all

Fig. 7. Normalized FC.

Fig. 8. Normalized read-and-modify ratio.

Fig. 9. Comparison of write latencies according to page configurations in
the proposed method.

values were normalized to the write latency of an SPNFM with
2 kB page. As reported in [4], the optimal SPNFM page size
varies according to the workload. Here, workloads with many small
write requests (Financial1, Financial2, Exchange, and G-Purpose1)
benefited from a small-page SPNFM, while others worked more
effectively with a larger page SPNFM.

The proposed method showed the smallest write latency regardless
of workload or optimal page size. Its write latency was reduced
by 63%, 54%, and 73% compared with SPNFM with a 2-, 4-, and
64 kB page, respectively. For further analysis, we measured FC and
the read-and-modify ratio (RRnM), as shown in Figs. 7 and 8. They
are defined as FC = Suns and RRnM = PRnM /Pw , where Suns,
Pw , and PRnM refer to the numbers of total unusable sectors within
a page, the total number of written pages, and the total number of
read-and-modify pages, respectively [4].

The proposed method reduced the amount of FC, particularly
for workloads with small writes (i.e., Financial1 and Financial2),
as shown in Fig. 7. The reduced FC was the result of reduced
fragmentation and leaded to fewer GCs. Moreover, the proposed
method improved RRnM , as shown in Fig. 8; the values were similar
to that of the 4 kB SPNFM despite the limited capacity of the 4
kB pages of MPNFM. This means that data requested from the
host were well matched with different page sizes of MPNFM. In
fact, the proposed method was not always better than SPNFM in
terms of FC and RRnM ; however, at least one of its two metrics

768 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

Fig. 10. Normalized total erase count (EC) and total erased bits (EB).

was generally lower than SPNFM’s average, thereby resulting in a
marked performance improvement, as shown in Fig. 6.

Results on the read latency of the proposed method were omitted
from the experiment because they were similar to the read latency
result of SPNFM. This is because read latency only relates to the
number of required NFM read operations for the given request, unlike
write requests that require read-and-modify operations and GCs [15].

2) Optimization of MPNFM: To determine the optimal
combination of MPNFM page sizes under our workloads, various
page combinations were conducted, as shown in Fig. 9. MPNFM
outperformed SPNFM regardless of its configuration, which again
proved the effectiveness of MPNFM. Moreover, MPNFMs with
4 kB page were slightly better than those with 2 kB page, because
the latter required more program commands for the same amount of
data than did the 4 kB page.

3) Life-Time of NFMs: In general, the total number of erased
counts (EC) in NFM is inversely proportional to the life-time.
However, in our experiment, it is not enough for measuring the
life-time, since the number of erased bits for each page size is
quite different. For this reason, we measured the total number of
erased bits (EB) in addition to EC . Simply speaking, the best
NFM architecture in terms of life-time will show the least EB as
well as EC . In NFMs with the same capacity, the NFMs with smaller
pages show higher EC due to smaller block size, while the NFMs
with larger pages show higher EB due to more FC. Surprisingly, it is
observed that the proposed MPNFM is comparable with the best cases
in both metrics—EC and EB . It means that our page management
method allocates appropriate size of pages to the given requests,
which results in the reduced EB and EC of Fig. 10 (more details are
provided in [15]).

VI. CONCLUSION

In this brief, we have proposed an MPNFM and a management
method for the NFM. The proposed NFM includes different sizes of
pages without affecting the area and the manufacturing process, and

the pages reduce fragmentation and wasted spaces occurred by
the incongruity between data and page sizes. In experimental
results, our method improves write latency and the life-time of
NFM by up to 65% and 62%, respectively, compared with a 32 kB
SPNFM.

As a future work, we will develop a wear-leveling algorithm to
resolve unbalanced wear-outs between large-page and small-page size
blocks. We will also focus on power-efficient MPNFM architecture
for large-scale storage systems.

REFERENCES

[1] Y. S. Cho et al., “Adaptive multi-pulse program scheme based on
tunneling speed classification for next generation multi-bit/cell NAND
flash,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 948–959,
Apr. 2013.

[2] J. Cooke, “NAND flash 101: An introduction to NAND flash and how
to design it into your next product,” in Proc. Embedded Syst. Conf.,
2006.

[3] D. Wang, A. Sivasubramaniam, and B. Urgaonkar, “A case for heteroge-
neous flash in the datacenter,” in Proc. IEEE 33rd Int. Distrib. Comput.
Syst. Workshops, Jul. 2013, pp. 220–225.

[4] K. Bang, D.-G. Kim, S.-H. Park, E.-Y. Chung, and H.-J. Lee,
“Application-aware design parameter exploration of NAND flash mem-
ory,” J. Semicond. Technol. Sci., vol. 13, no. 4, pp. 291–302, 2013.

[5] J. Cooke, “The inconvenient truths about NAND flash memory,” in Proc.
Micron MEMCON, 2007, pp. 19–23.

[6] K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental
step pulse programming scheme,” IEEE J. Solid-State Circuits, vol. 30,
no. 11, pp. 1149–1156, Nov. 1995.

[7] L. Crippa et al., “Sensing circuits,” in Inside NAND Flash
Flash Memories. Amsterdam, the Netherlands: Springer-Verlag, 2010,
pp. 197–233.

[8] R. Micheloni et al., “High voltage overview,” in Inside NAND
Flash Memories. Amsterdam, the Netherlands: Springer-Verlag, 2010,
pp. 329–351.

[9] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung, “Design and analysis
of flash translation layers for multi-channel NAND flash-based storage
devices,” IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1392–1400,
Aug. 2009.

[10] S.-H. Park, D.-G. Kim, K. Bang, H.-J. Lee, S. Yoo, and E.-Y. Chung,
“An adaptive idle-time exploiting method for low latency NAND
flash-based storage devices,” IEEE Trans. Comput., vol. 63, no. 5,
pp. 1085–1096, May 2014.

[11] NAND Flash Memory Datasheet, Micron Technology, Boise, ID, USA,
2009.

[12] (2007). UMass Trace Repository. [Online]. Available: http://traces.cs.
umass.edu/

[13] (1997). Storage Networking Industry Association. [Online]. Available:
http://iotta.snia.org/

[14] M. Russinovich. (2006). DiskMon for Windows V2.01. [Online].
Available: http://technet.microsoft.com/enus/sysinternals/bb896646.aspx

[15] J.-Y. Kim, S.-H. Park, H. Seo, K.-W. Song, S. Yoon and E.-Y. Chung.
(2015). [Online]. Available: http://dtl.yonsei.ac.kr/down/MPNFM.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

